ASNT Fall Conference and Quality Testing Show Columbus, Ohio

Condition Assessment of Engine Component Materials Using MWM® Eddy-Current Sensors

Neil Goldfine, Vladimir Zilberstein, Darrell Schlicker, Yanko Sheiretov, Andrew Washabaugh, Steve Cargill

JENTEK Sensors, Inc., Waltham, MA

Pramod Khandelwal

Rolls-Royce, Indianapolis, IN

Richard Wood, Joseph Price

Naval Aviation Depot, Cherry Point, NC

15-19 October 2001

JENTEK Sensors, Inc. 110-1 Clematis Avenue; Waltham, MA 02453-7013 Ph: 781-642-9666; email: jentek@shore.net

Outline

- MWM Sensors and MWM-Arrays
- Absolute Property Imaging
- Engine Component Applications
 - Examination of Rear Turbine Bearing Support
 - Characterization of Aged MCrAlY Coating
 - Inspection of F404 Compressor Blades for Weld Repairs
- Conclusions

Sensor Improvements for "Air" Calibration

37-Channel MWM Array Probe

39-Channel Absolute Impedance Instrument

JENTEK[®] Sensors Inc.

Distributed Microcracks and Macrocracks from Bending Fatigue

Grids Methods use Pre-computed Databases of Sensor Responses for Calibration and Measurement

of response databases

Conductivity/Lift-off Measurement Grids for Wide Frequency Range

2.5 MHz

6.3 MHz

12.6 MHz

JENTEK[®] Sensors Inc.

MWM-Array Magnetic Permeability Image

Normalized Permeability at 158.4 kHz

Control specimen that has not been subject to fatigue testing. (Top) Specimen tested to 88% of fatigue life. (Bottom)

General View of the RTBS

MWM Measurements on the I.D. Surface of the Internal Rim Opposite the Seam Weld

Circumferential Seam Weld Location in the RTBS

Relative Position of the MWM Sensor and Seam Weld

GridStation Display of the MWM Measurements

ASNT_Fall_2001_EngineCompnts

"Effective" Relative Permeability

Transverse

Measurements over a 12-in. segment containing the visible crack (transverse MWM orientation)

Longitudinal

Measurements over a 12-in. segment containing the visible crack (longitudinal MWM orientation)

"Effective" Conductivity

Transverse

MWM measured conductivity vs. location along the circumference. Measurements over a 12-in. segment containing the visible crack (transverse MWM orientation)

Longitudinal

MWM measured conductivity vs. location along the circumference. Measurements over a 12-in. segment containing the visible crack (longitudinal MWM orientation)

Aged MCrAIY Coating Characterization

- Artificial aging of coated coupons to simulate service aging
 - GTD-111 substrate
 - PWA 286 coating
- EPRI Round-Robin study
 - Training set and "blind" sample set used for study
 - Metallography determined layer thicknesses after study

Aged MCrAIY Coating Measurements

- Measurements on top and bottom of coupons
 - Post-study metallography indicated slight differences between sides
- Measurements with and without shims
 - Highly reproducible effective conductivity measurements

Aged MCrAIY Coating Characterization Results

- Blind set samples had frequency variations similar to training set
- For remaining Beta Zone thickness on blind samples:
 - High correlation between MWM estimates and metallography
 - Low RMS error in MWM estimates (6.3 um, 0.25 mils)

Images of cracks in Slots 19 (0.12 in. long) and Slot 37 (0.06 in. long)

Weld Detection in Ti Compressor Blade

Conductivity Change = 0.01 % IACS

= 1 % of Absolute Conductivity

Inspection of Cold Rolling Integrity on C-130 Propeller Blades

Bi-Directional Conductivity Measurements and Definition of Conductivity Ratios

Ratio Analysis

Typical Interface for Cold Work Quality Control

JENTEK[®] Sensors Inc.

Shotpeen Correlation — 2 Frequency Conductivity Ratio

Effective Thickness Estimation on Shotpeen Specimens, FS33

Multi-Frequency Profiles of Shotpeen Specimens, FS33

JENTEK[®] Sensors Inc.

Summary

- MWM demonstrated capability:
 - Surface and subsurface crack imaging
 - Coating degradation
 - Cold work assessment
- New Development focussed on field and depot implementation for specific applications